On the Existence of Dimension Zero Divisors in Algebraic Function Fields

نویسندگان

  • C. RITZENTHALER
  • R. ROLLAND
چکیده

Let F/Fq be an algebraic function field of genus g defined over a finite field Fq. We obtain new results on the existence, the number and the density of dimension zero divisors of degree g− k in F/Fq where k is an integer ≥ 1. In particular, for q = 2, 3 we prove that there always exists a dimension zero divisor of degree γ − 1 where γ is the q-rank of F and in particular a non-special divisor of degree g − 1 when the Jacobian of F is ordinary. We also give a necessary and sufficient condition for the existence of a dimension zero divisor of degree g− k for a hyperelliptic field F in terms of its Zeta function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On zero divisor graph of unique product monoid rings over Noetherian reversible ring

 Let $R$ be an associative ring with identity and $Z^*(R)$ be its set of non-zero zero divisors.  The zero-divisor graph of $R$, denoted by $Gamma(R)$, is the graph whose vertices are the non-zero  zero-divisors of  $R$, and two distinct vertices $r$ and $s$ are adjacent if and only if $rs=0$ or $sr=0$.  In this paper, we bring some results about undirected zero-divisor graph of a monoid ring o...

متن کامل

HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC

Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

Special Divisors of Large Dimension on Curves with Many Points over Finite Fields

We prove a non-existence result for special divisors of large dimension on curves over finite fields with many points. We also give a family of examples where such divisors exist under less stringent hypotheses.

متن کامل

O ct 2 00 4 On the Existence of Non - Special Divisors of Degree g and g − 1 in Algebraic Function Fields over

We study the existence of non-special divisors of degree g and g − 1 for algebraic function fields of genus g ≥ 1 defined over a finite field Fq. In particular, we prove that there always exists an effective non-special divisor of degree g ≥ 2 if q ≥ 3 and that there always exists a non-special divisor of degree g − 1 ≥ 1 if q ≥ 4. We use our results to improve upper and upper asymptotic bounds...

متن کامل

1 3 O ct 2 00 4 On the Existence of Non - Special Divisors of Degree g and g − 1 in Algebraic Function Fields over F q

We study the existence of non-special divisors of degree g and g − 1 for algebraic function fields of genus g ≥ 1 defined over a finite field Fq. In particular, we prove that there always exists an effective non-special divisor of degree g ≥ 2 if q ≥ 3 and that there always exists a non-special divisor of degree g − 1 ≥ 1 if q ≥ 4. We use our results to improve upper and upper asymptotic bounds...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009